Effects of strain on the electronic structure of VO2

نویسندگان

  • Bence Lazarovits
  • Kyoo Kim
  • Kristjan Haule
  • Gabriel Kotliar
چکیده

We present cluster-dynamic mean field theory DMFT continuous time quantum Monte Carlo method calculations based on a downfolded tight-binding model in order to study the electronic structure of vanadium dioxide VO2 both in the low-temperature M1 and high-temperature rutile phases. Motivated by the recent efforts directed toward tuning the physical properties of VO2 by depositing films on different supporting surfaces of different orientations, we performed calculations for different geometries for both phases. In order to investigate the effects of the different growing geometries we applied both contraction and expansion for the lattice parameter along the rutile c axis in the three-dimensional translationally invariant systems miming the real situation. Our main focus is to identify the mechanisms governing the formation of the gap characterizing the M1 phase and its dependence on strain. We found that the increase of the bandwidth with compression along the axis corresponding to the rutile c axis is more important than the Peierls bonding-antibonding splitting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic and Optical Properties of AlN Nanosheet Under Uni-axial Strain

   We have investigated the electronic and optical properties of AlN hexagonal nanosheets under different kinds of strains, using the band structure results obtained through the full potential linearized augmented plane wave method within the density functional theory. The results show that 10% uniaxial strain along the zig-zag direction induces an indirect to direct band-gap transition. Th...

متن کامل

مطالعه اثر پوشانندگی سطح بر خواص مکانیکی و اپتیکی نانوسیم‌های اکسید ‌روی

 In this work, on the basis of density functional theory and the generalized gradient approximation (GGA) we optimized the electronic structure of the unsaturated and hydrogen saturated ZnO nanowires with [0001] orientation. Studying the effects of a uniaxial strain on the nanowires, we calculated the Young’s modulus and the effective piezoelectric coefficient of the nanowires. Furthermore, the...

متن کامل

The Effects of Martensite Thermomechanical Parameters on the Formation of Nano/Ultrafine Grained Structure in 201LN Stainless Steel

In this study, the effects cold rolling and annealing parameters during thermomechanical processing of the AISI 201LN stainless steel were investigated. The cast samples were homogenized, hot-rolled and solution-annealed to acquire a suitable microstructure for the subsequent thermomechanical treatment. Unidirectional and transverse multi-pass cold rolling at 25, 0 and -15 °C was carried out to...

متن کامل

Effect of Alkyl Substituents on the Hydrogen Bonding and Molecular Structure of Benzophenylhydroxamic Acids Crystal structure of UO2 Complex of p-Isopropylbenzophenylhydroxamic Acid

The effect of alkyl substituents on the C-phenyl and/or the N-Phenyl ring of benzophenylhydroxamic acid on their molecular structure and hydrogen bonding has been investigated. The predominant configuration in CHCl3 is determined by steric and electronic effects. Substituents on the C-phenyl ring favor the cis configuration, while substituents in the N-phenyl ring favor a trans c...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010